国产又大又硬又粗又长又爽又黄的视频-国产精品18久久久久久久久-在线观看日韩美女视频-亚洲成人精品女人久久久久-五月天综合伊人久久-日韩欧美亚洲国产视频-国产成人亚洲欧美二区综-久久国产乱子伦精品免费观看-国产精品成人av高清在线观看,亚洲av黄色免费电影,久久久一本精品99久久精品99,亚洲精品你懂的在线观看

技術(shù)文章

您的位置

首頁 技術(shù)文章

Gamry電化學(xué)工作站:傳輸線模型

點擊次數(shù):4333 更新時間:2017-08-04

Purpose of This Note

This application note discusses theory and practice of transmission lines. It outlines the necessity of transmission lines for modeling porous electrodes in Electrochemical Impedance Spectroscopy (EIS) and describes different kinds of  models.

Several practical examples of different electrochemical energy storage and generation devices give suggestions how to evaluate such EIS spectra with Gamry’s Echem Analyst.

Introduction

The classical electrochemical interface can be described by a plane electron-conducting electrode and an

ion-conducting electrolyte. Electrochemical reactions occur on the surface of the  electrode.

The electrochemical behavior of this interface can be described by different models. One of the simplest and most common models is the so-called Randles model shown in Figure 1.

Figure 1 – Diagram of a simplified Randles model describing the electrochemical interface on plane  electrodes.

The “equivalent series resistance” (ESR) represents the sum of resistances from the electrode, electrolyte, and electrical contacts. It is in series to a parallel connection  of charge-transfer resistance Rct and double layer capacitance Cdl.

Rct represents all Faradaic reactions that occur on the electrode’s surface. These reactions can be reversible and irreversible. In contrast, Cdl describes non-Faradaic charge storage mechanisms. It is often replaced by a “constant phase element” for non-ideal  assumptions.

This model is good for approximations and for describing electrochemical interfaces of plane electrodes. But it poorly describes the effect of porous electrodes that are used in most electrochemical  cells.

Porous Electrodes

To increase performance, energy storage and generation devices such as electrochemical capacitors (ECs), fuel cells, or dye-sensitized solar cells (DSCs) use highly  porous electrodes. These electrodes exhibit a very high surface compared to volume or weight.   For example,  ECs can have specific electrode surfaces of 1000 m2/g   and more.

Electrodes that are using highly porous materials can be differentiated into two parts – the base electrode and   the porous electrode. The base electrode is generally an insulated and inactive metal foil where the active  material is fixed on.   Figure 2 shows a schematic  setup.

Figure 2 – Classification of regions for a porous electrode    interface.

Compared to plane electrodes (see Figure 1), reactions occur directly on the surface of the electrode.  In   contrast, the reaction velocity within the pore of porous electrodes is limited.  The access to the active interface  for ions is hindered due to the small inner volume of the pores. Hence electrochemical reactions gradually delay the farther ions penetrate into the pore. This step becomes the dominating part.

Due to these restrictions on the electrochemical reactivity, the porous electrode has to be divided into three regions. These interfaces are marked “A”, “B”, and “Active Interface” (see Figure  2).

Region “A” represents the interface between the outer surface of the porous electrode and the  electrolyte.

Region “B” describes interactions between electrolyte and base electrode.

The most reactive parts itself is within the pore. This region is called “Active Interface”. It describes the interactions between active material of the porous electrode and electrolyte.

To investigate all these phenomena, EIS is the most common technique in research. It allows stud一ng reaction mechanisms of electrochemical systems in a generally non-destructive way.

For better understanding, different fit models can be used to estimate electrode and electrolyte parameters. In the following sections, different models will be introduced and explained by means of measurements on real cells. To follow the content of this application note, basic knowledge of EIS and modeling equivalent circuits is assumed.

Transmission lines

The stepwise flux of ions within a pore can be described  by a so-called transmission line. Figure 3 shows a model  in its generic form.   The model consists of several   parallel and serially connected elements. It is used to describe the different regions shown in Figure  2.

Figure 3 – Scheme of a generic transmission line model.

L is the length of the transmission line or the depth of  the pore respectively. The two interfaces “A” and “B” are represented by impedances ZA(x = 0) on the outer surface of the pore and ZB(x = L) on the base electrode at the end of the pore. Along the pore, the transmission line is represented by repeating impedance  elements.

c1 is the impedance of the electrolyte within the pore. Note that this impedance is different to the bulk electrolyte resistance that is represented as part of the

ESR. c2 is the impedance of the porous electrode’s solid phase. Both parameters describe the ohmic drop between 0<x<L. z describes the impedance at the “Active Interface” region shown in Figure 2.

Juan Bisquert[1] calculated the impedance Z for a general transmission line model (see equation 1).This equation  is the basis for modeling transmission lines for EIS  spectra.  For his calculations he assumed that c1, c2,   and

z are independent on their position (0<x<L) within the pore. Hence they can be treated as homogenously distributed.

In practice, knowing the pore depth L allows to determine important parameters such as the conductivity and diffusion coefficients from the impedance fit results. However, this would go beyond the scope of this application note. Please see cited literature for detailed information.

Fitting transmission lines in the Echem Analyst

Gamry’s Echem Analyst contains several pre-built EIS models including different transmission line models that can be used instantly or  modified.

In addition, the model editor enables building own EIS models. A variety of most common elements can be interconnected to describe different electrochemical systems.

For adjusting and calculating model parameters, the Echem Analyst offers two different algorithms. A Simplex algorithm and a Levenberg-Marquardt algorithm calculate the impedance to find adequate fit-parameters.  First one also has an Auto-Fit  function

for easier finding start parameter. The latter one is faster but requires partial derivates of the impedance for each parameter.

The next sections describe all pre-built transmission line models in the Echem  Analyst.

“Unified” model

The “Unified” model can be used for testing different boundary conditions and limitations regarding the electrode. Limiting cases of transmission lines can be easily achieved by adjusting appropriate elements to be zero or very large.

The transmission line model “Unified” is shown in Figure 4. In addition, a resistor (not shown) is in series  to the model.  It represents the  ESR.

This model uses only the Simplex algorithm as its derivates would be computational and algebraic prohibitive to calculate. In total, eleven parameters can be  modified  and calculated.

Figure 4 – Scheme of the transmission line model “Unified”. For details, see text.

ZB and z are both represented as parallel combination of resistor and constant phase element. The resistor describes charge-transfer reactions at the interface. The constant phase element summarizes all polarization effects. In an ideal case, it can be treated as   capacitor.

However, a constant phase element addresses also non-ideal capacitances resulting from inhomogeneities of porous electrodes.

All other components in the “Unified” model – ZA, c1, and c2 – are represented by simple  resistors.

“Bisquert Open” and “Bisquert Short”

Figure 5 shows two transmission line models which describe limiting cases of the general transmission  line 

model. Both were originally developed by Bisquert[2] to describe diffusion and recombination  processes.

Model a) is called “Bisquert Open” (BTO) and  b) is called “Bisquert Short” (BTS).  In the Analyst, an additional resistor is in series to the model. It represents the ESR and is not shown in Figure 5.

Figure 5 – Two specific cases of transmission line models.

In both models it is assumed that the conductivity of one resistive trail is much larger than the other one. Hence the impedance of the electrode’s solid phase c2 can be set to zero. Only the electrolyte resistance rm within the pore is considered.

Similar to the “Unified” model, impedance z of the active interface is a parallel circuit of resistor and constant phase element. Both represent Faradaic and capacitive  non-Faradaic  reactions respectively.

Impedance ZA is set to infinite (open circuited). This means in practice that electrochemical reactions do not occur on the surface of the porous electrode. Only reactions within the pore are going to be considered. ZA can be compley neglected at the fitting  process.

The difference in both models is impedance ZB. At the “Bisquert Open” model, ZB is also set to infinite. The system is defined by “reflecting boundary conditions”. This means that the base electrode is compley insulating and no reactions (Faradaic or non-Faradaic) occur on its surface.

In contrast, ZB is zero for the “Bisquert Short” model.This system is defined by “absorbing boundary  conditions”. Hence the substrate’s surface is not entirely insulated and also interacts with the electrolyte. This would short-circuit the porous  film.

Bisquert[2] calculated for both models the total impedance. The results are shown in Equation 2 and 3.

Applications

Electrochemical systems can be very  different.

Electrochemical capacitors base on highly  reversible

non-Faradaic charge separation mechanisms while DSCs base on reversible redox reactions.

In addition, if limitations of electrochemical systems are exceeded, underl一ng electrochemical mechanisms can change drastically.   Non-reversible Faradaic reactions can occur which can lead to severe damages of the    cell.

The next sections apply the prior discussed about transmission lines on practical  examples.

Electrochemical  capacitors

High-power electrochemical capacitors are developed for a number of applications. These include uninterruptible power supplies, lasers, and power electronics for electric and hybrid vehicles among others. They provide a very high capacitance in a relatively small volume and  weight.

Figure 6 shows the Bode diagram of a potentiostatic EIS test on a 5 F electric double layer capacitor (EDLC) from Nesscap.A DC voltage of 0 V with an AC voltage of

1 mVrms were applied to the capacitor. The frequency range varied from 100 kHz to 5 mHz.

Figure 6 – Bode diagram of a potentiostatic EIS test on a 5 F EDLC ().  () R-CPE model, () modified “Bisquert Open” model. (•) magnitude, (+) phase.  For details, see text.

In addition, two different fits of models are shown – a R-CPE model (red curve) and a modified “Bisquert Open” model (green curve). An additional inductance (L1) was added to both models and is in series to the ESR. A detailed setup is shown in Figure 7.

 

Figure 7 – Two models that are used to fit the capacitor data that are shown in Figure 6. (a) R-CPE model, (b) modified “Bisquert Open” model.

Model a) is an extended version of a Randles model shown in Figure 1. The double layer capacitance is replaced by a constant phase element Qp to simulate non-ideal electrode behaviors. Model b) is a modified “Bisquert Open” model.

The very simple R-CPE model (red curve) shows only very poor agreement with the EIS spectrum of Figure 6. Especially at frequencies above 1 Hz, the fit starts to differ from the measured spectrum. In this region the transition from resistive to capacitive behavior occurs. The phase angle changes from nearly 0? to -90?.  At very high frequencies, inductance is the dominating part showing a positive phase angle.

In contrast, the modified “Bisquert Open” model (green curve) overlaps nearly perfect with the capacitor’s spectrum in all frequency regions.  It models very well the incremental decrease of the impedance and increase of the phase angle at frequencies above 1 Hz.

Table 1 lists up fit-parameters for the modified “Bisquert Open” model. The pore depth L and resistance rk are locked. Both columns are highlighted in gray. As no Faradaic reactions are expected on the active interface  of the EDLC, rk was set to a very high   value.

Dye-sensitized solar cells

Dye-Sensitized solar cells are another application where transmission line models are regularly employed. DSCs are solar cells that utilize organic or organometallic dye molecules. They are adsorbed on mesoporous TiO2 to absorb light efficiently. Excited electrons are then extracted out through the  TiO2.

Figure 8 shows an impedance spectrum of a DSC using porous TiO2 and a liquid electrolyte. It was recorded in potentiostatic EIS mode with zero DC voltage and an AC voltage of 10 mVrms. The frequency range ranged between 10 kHz and 70  mHz
.

 

Figure 8 – Nyquist diagram of a potentiostatic EIS test on a DSC (). () “Bisquert Open” model.For details, see text.

The Nyquist plot shows at higher frequencies a characteristic linear shape in the Nyquist diagram with a slope of about -1. This region – up to about 10 Hz – represents the transmission line. At lower frequencies  the curve has the shape of a half circle representing Faradaic reactions on the electrodes  surface.

The spectrum was modeled using a “Bisquert Open” model with an ESR in series. It fits nearly perfect over the entire frequency range. The fit results are summarized in Table 2. The pore depth L was again locked.

Note that in contrast to EDLCs (see prior section), resistance rk is now much smaller due to Faradaic reactions occurring on the active material. The constant phase element (Ym, a) which represents the capacitance of the system is much smaller compared to the EDLC.

In certain types of DSCs, organic hole conductors are used instead of a liquid electrolyte. Region “B”, the interface between ionic conductor and base electrode,is no more compley insulating and reactions can occur.

Fabregat-Santiago et al.[4] developed a model to fit this type of DSCs.The basic model is shown in Figure 9.

Figure 9 – Scheme of a transmission line model to describe TiO2/organic hole conductor DSCs. For details, see text.

The “Unified” model enables the possibility to adjust appropriate parameters and to model different cell conditions. Single parameters can be individually adapted.

In this particular case, the impedance on the outer surface of the electrode’s pore is open circuited. This can be simulated with a very high value for RA. The impedance of the conducting electrode material is neglected and can be set to zero (r2 =  0).

Computational simulations of Nyquist plots for this type of DSCs are shown in Figure 10.  It shows different  spectra for increasing reaction resistances RB on the base electrode/electrolyte interface.

Figure 10 – a) Simulated data for the circuit depicted in Figure 9 with different reaction resistances RB.  b) Segment of the spectra.

(Q) RB = 0.1 ?, (6) RB = 1 ?, (□) RB = 10 ?, (O) RB = 100 ?. For details, see text.

The spectrum of this specific case looks similar to the Nyquist plot in Figure 8. With increasing reaction resistance RB the width of the half circle is  increasing.

However, the underl一ng reaction mechanism is different as the base electrode is not compley insulating (“reflecting boundary conditions”).

Electrochemical reactions (Faradaic and non-Faradaic) can occur on the base electrode.

Table 3 lists up all parameters that were used to generate the spectra of Figure 10. RA, RB, r2, and the pore depth L were locked during fitting and are highlighted in gray.

Conclusion

Porous electrodes are regularly utilized for applications where high surface areas are beneficial. Impedance spectroscopy on porous materials regularly results in  data that can not be modeled with standard circuit components. Hence transmission lines are required due  to the distributed nature of the interfacial impedance throughout the pore.

Theories of different models that are used in literature and included in Gamry’s Echem Analyst are discussed.   By means of examples on different energy storage and generation devices, utilization of the Echem Analyst and evaluation of transmission lines are shown.

Acknowledgements

We gratefully acknowledge the data and very useful comments from Prof. Juan Bisquert and Dr. Francisco Fabregat-Santiago in the process of writing this  paper.

Literature

[1] Bisquert, J., Phys. Chem. Chem. Phys., 2, pp. 4185-4192, 2000.

[2] Bisquert, J., J. Phys. Chem. B, 106,  pp. 325-333,    2002.

[3] Wang, Q.; Moser, J.-E.; Grätzel, M., J. Phys. Chem. B, 109, pp.  14945-19453, 2005.

[4] Fabregat-Santiago, F.; Bisquert, J.; Garcia-Belmonte, G.; Boschloo,  G.; Hagfeldt, A., Sol. Ener. Mat. & Sol. Cells, 87, pp. 117-131, 2005.

Demystif一ng Transmission Lines: What are They? Why are They Useful? Rev. 2.0 10/20/2014 © Copyright 1990-2014 Gamry Instruments, Inc.

美國Gamry電化學(xué)關(guān)鍵詞:多通道電化學(xué)工作站,電化學(xué)工作站價格,石英晶體微天平,電化學(xué)工作站廠家,電化學(xué)工作站品牌
版權(quán)所有 總訪問量:429744 地址:上海市楊浦區(qū)逸仙路25號同濟晶度310室 郵編:200437
聯(lián)系人:客服 郵箱:jqiu@gamry.com
GoogleSitemap 技術(shù)支持:化工儀器網(wǎng) 管理登陸 滬ICP備15019588號-2
超清视频大全 国产suv精品一区二区62-欧美精品免费在线观看-爆乳熟妇一区二区三区霸乳-免费精品国产人妻国语禁果Av | 国产一区二区三区gay男同-神木麓无码巨乳在线-国产香蕉视频在线播放-亚洲中文字幕无码久久2017 | 亚洲春色古典小说自拍-水野优香成人无码电影-国产精品JIZZ在线观看无码-免费色色 | 多男混交群体交乱嗯啊-女人叫床娇喘高潮录音声mp3-五十路电车女-国产精品亚洲一区二区av | 丁香花丶激情五月-黑人av一区三区在线观看-大胆在线aaaav视频网站-综合国产成人亚洲 | 北条麻妃XXXHD-又长又粗又爽又黄少妇毛片-北条麻妃加勒比黑人无码-肉色超薄丝袜脚交 | 国产盗摄xXxX视频XXXⅩ-男女肉粗暴国产av-中文字幕探花在线-成人永久免费视频网站app | 黑人亚洲成人淫奸播放-涩av网站-Xxxxxxx色色色色电影Xxxxx-gogogo手机高清在线观看软件 | 韩国极品BJ自慰XXX-杨幂久久一区二区免费图片-雪花飘电影电视免费观看,国产最新精品精品视频-伊人网22 | 涩色av-干少妇13p-麻豆Chinese新婚XXX-亚洲一级片免费 | 麻豆av新婚之夜被迷-女人自卫慰流水视频-无套进入无套内谢-嗯~公啊~嗯~挺进啊~A片视频 | 伊人影院222-北条麻妃熟女60分钟-国产成人亚洲综合无码18禁-美女自蔚bd | 久久精品a亚洲国产v高清不卡-国产第一福利 久久99在线视频-日韩女同av-久久久久精品一本 | 就去干狠狠干-freexxx69性亚美-成人欧美久久久久美婷婷 国产uv1区二区三区-昭和ヘンリ一冢本无码 | 国产成人精品一区二区三区无码-DVD日韩免费观看 思思久久99热免费精品6 -桃色视屏-巨色网站 | 欧美日韩一区精品视频一区二区-亚洲处破女 www-午夜福利视频在线观看成人-黑人亚洲双渗透 | 24小时免费直播在线观看-人禽伦交xxxxxxxx-日本人毛茸茸b毛茸茸十区-欧美操穴 | 八月丁香婷婷综合伊人-伊人青青色欲香天天综合网-美国怡红院线路一在线观看视频-日韩精品免费在线观看 | HD韩国电影在线观看 综合av人妻一区二区三区-国产东北露脸精品视频-伊人AV导航-国产98在线 | 日韩 | 欧美 | 日本高潮喷水XXXXXXX孕妇-剧情片电影免费在线 99热国产这里只有精-DVD高清电影在线 av无码精品一区二区三区宅噜噜-女14裸免费看 | HD韩国电影在线观看 综合av人妻一区二区三区-国产东北露脸精品视频-伊人AV导航-国产98在线 | 日韩 | 欧美 | 最好的迅雷电影下载网,分享最新电影,高清电影、综艺、动漫、电视剧等下载!-丝袜av在线丝袜av天堂国产-日本少妇ⅩXXX无码妖精视频-DVD高清完整版播放 日韩欧美精品一区二区三区在线 | JIZZJIZZJIZZ亚洲熟妇-国产一二三区在线播放-伊人精品影院-www.se美女不卡 | 就去干91-国产美女自卫-国产连裤袜AV-四十路五十路熟女作品 | futa女女疯狂榨精3D-国产亚洲精久久久久久叶玉卿-高清在线播放观看 精品成人A片久久久久久船舶-安徽妇搡BBBB搡BBBB | 91色情网老熟女-五级A片-女子业余国产-亚州又大又粗 | 熟人妻中文字幕-吻胸视频青青一区二区三区-ass中国尤物肉体piCS小说-国产一久久香蕉国产线看观看 | 猫咪大香蕉手机在线视频-中文天堂最新中文字幕版-DVD手机免费观看完整 漂亮的保姆中文版-粉嫩AV四季AV绯色AV | 樱花影视 免费高清电影电视剧手机版在线观看-玩弄丰满人妻-极品美女想被c-2020最新国产精品视频 黑森林毛茸茸熟女人妻-女人自慰网址-精品国产无套在线观看-日本睡熟迷奷系列A片 | 北条麻妃中文magnet-91干逼-中国精品露脸-风间由美乳巨码无A片在观看 | 菠萝蜜一二区免费区高清永久版的特点-欧美老女人啪啪啪-免费看污污网站- HD免费在线播放 精品午夜一区二区三区视频 | 森泽佳奈无码-国产熟女狼人AV-无毒不卡少妇-日本女女色www | 逍遥阁美女视频-亚洲精品人妻中文字幕在线-BD英语免费观看超清 中文字幕日韩色网站-日韩中文字幕无砖 | 嗯~用力啊~嗯~c我~腐文-人妻视频一区二区三区免费-久久国产精品一区二区无尽3DH-裸体撒尿AAAAAA片 | 亚洲高清中文字幕综合网-fisting国产精品-4k神马影院在线 3652 1571 **激情av波多野结衣作品-胡秀英性事 | 99久久精品国产一区二区三区-China中国老熟女piCS-日韩传媒大乱交-97人人操人人乐 | 亚洲风间-乱色精品无码一区二区国产盗-DVD电影在线观看 亚洲国产日韩欧美今日更新-91av探花 | 爆操小仙女-欧美明星久久久A-台湾佬中文字幕在线中文字幕-中文字幕在线视频伊人二区青青天堂 | 熟女人妻喷水-动漫精品无码av-美女富婆享受性按摩的毛片-XXX欧美肥富婆BBW免费 | 日本人aiav-天美传媒自制剧免费下载-四虎成人影音-熟女人妻性爱 长篇H版少妇沉沦交换-女同互磨ⅤideoHD-国产无码免费在线-密桃AV | 挪威美女A片在线播放-扩张虐撕裂蹂躏调教h-成人AV-美女被操屄-www.无套后入-JIZZ学生18丝袜中国老师 |